江苏省转型金融支持经济活动目录(建材行业)

(2024年版)

领域	内容或路径	技术/说明	标准/指标
1. 水泥行业			
1.1 低碳水泥	1.1.1 高贝利特低	熟料矿物中硅酸二钙由当前的 20%提升至 40%以上,	性能满足 GB/T 200《中热硅酸盐水泥、低
	热/中热硅酸盐水泥	从而降低石灰石消耗和 CO2 减排。该水泥水化热低,	热硅酸盐水泥》; 水泥生产线达到或优于 GB
	及其制备技术	适用于大体积结构工程。	16780 《水泥单位产品能源消耗限额》中 1
			级能效水平。
	1.1.2 硫铝酸盐和	以硅铝质天然原料或固废为原料,采用新型干法烧成	水泥性能满足 GB 20472 《硫铝酸盐水泥》、
	铁铝酸盐水泥及其	技术,生产硫酸铝酸盐和铁铝酸盐水泥。熟料生产中	GB/T 201 《铝酸盐水泥》、JC/T 437 《自应
	制备技术	石灰石用量降低 30%以上。	力铁铝酸盐水泥》等要求;熟料及水泥生产
			线达到或优于 GB 16780 《水泥单位产品能
			源消耗限额》中 1 级能效水平。
	1.1.3 贝利特-硫铝	以低品位石灰石、粉煤灰及赤泥等为原料, 调控熟料	性能满足 GB 175《通用硅酸盐水泥》要求,
	酸钙-硫硅酸钙新型	矿物体系,实现低钙化,降低石灰石用量。该水泥性	水泥生产线达到或优于 GB 16780 《水泥单
	低碳熟料及其制备	能与普通水泥相当,可用于普通结构工程等。	位产品能源消耗限额》中1级能效水平。
	技术		
	1.1.4 大掺量固废	以工业固废为主要原材料,在碱金属及碱土金属激发	水泥性能满足 T/CECS 689《固废基胶凝材
	制备少熟料低碳水	作用下产生胶凝性能,用于预拌混凝土、建筑部品部	料应用技术规程》、JC/T 2391《制品用过硫
	泥技术	件及矿井充填等领域的少熟料低碳水泥。	磷石膏矿渣水泥混凝土》。
	1.1.5 镁质低碳水	以煅烧菱镁矿为粉体原料,磷酸盐溶液为拌合溶液,	
	泥及其制备技术	用于抢修抢建及建筑部品部件等的镁质低碳水泥。	

	1.1.6 粘土 (高岭	采用悬浮煅烧或类似工艺进行粘土(高岭土、煤矸石	熟料掺量可降低至 50%及以下。
	土、煤矸石等) 煅烧	等) 煅烧, 提高活性, 降低水泥产品中熟料掺量, 大	高岭土类粘土生产线热活化能耗指标≤450
	制备低碳水泥技术	幅降低单位水泥产品 CO ₂ 排放量。	kcal/kg 产品 (悬浮煅烧工艺)。
1.2 石灰石原			硅酸盐水泥熟料生产过程需消耗大量的石
料替代			灰石资源,同时分解大量的 CO ₂ ,生产过程
			CO ₂ 排放因子约为 0.53-0.55 t/t-熟料。原
			料替代是用非碳酸盐原料代替石灰石煅烧
			水泥熟料,降低生产过程中碳酸盐分解产生
			的 CO ₂ 排放量。
	1.2.1 电石渣替代	采用电石渣替代石灰石原料的新型干法水泥生产技	1.V 0.02 VII /W. 도 0
	石灰石质原料生产	术生产水泥熟料技术,既解决电石渣废渣污染环境问	
	水泥技术	题,又消除了水泥熟料生产过程中的碳酸钙分解过程	
	71-4017511	中CO。排放。	
	1.2.2 工业副产石	. 2	工业副产石膏生产水泥熟料烧成热
	青制硫酸联产水泥		
	节能减排成套技术	保证水泥熟料质量的同时,提高制酸烟气中的 SO。浓	7t; 1300 1330 Kca1/ kg C1.
	1 化燃料双套双小	度,降低联产硫酸成本。从而消除了水泥熟料生产过	
		程中的碳酸钙分解产生的 CO ₂ 排放,大大降低 CO ₂ 排	
	· · · · · · · · · · · · · · · · · · ·	放量。	
	1.2.3 低碳生料配		要求石灰石质原料替代率:≥5%。
	料技术	用钢渣、铜矿渣、铝矿渣等冶金矿渣作为水泥生产矿	
		化剂,降低熟料生成热,减少石灰石等原料用量,降	
		低 CO ₂ 排放量。	
1.3 化石燃料			通常水泥熟料煅烧过程需消耗大量的化石
替代			能源。煤作为燃料时, CO ₂ 排放因子约为
			0.26-0.28 t/t-cl。采用不影响熟料质量的

			燃料替代工艺,如采用生物质燃料、废轮胎等,可降低化石能源用量及 CO ₂ 排放量。
	1.3.1 生物质燃料替代	生物质燃料替代工艺技术包括生物质燃料分选,烘干,储存及喂料控制等加工制备工作,并涉及原有水泥生产线烧成系统的改造。	生物质燃料具有碳中性特性,即可认定生物质燃料燃烧产生的 CO ₂ 排放不计入排放指标内。
	1.3.2 一般燃料替 代(RDF)	(含热值)进行预处理等,利用各种形式预煅烧装置、分解炉内置式涡流燃烧处置装置等送入水泥窑炉系统焚烧,工艺过程包括 RDF 处置和储存、输送、喂料	要求水泥窑烧成系统燃料替代率达到25%-50%。
	1.3.3 生活垃圾处置	控制等及水泥熟料烧成系统的改造工作等。 包括全套生活垃圾预处理装置, 窑尾烘干及喂料装置, 水泥熟料烧成系统的改造工作等。	满足 GB30760《水泥窑协同处置固体废物技术规范》要求。 要求生活垃圾处置量: ≥500 t/d。
	1.3.4 污泥协同处置	利用水泥窑的余热对污泥进行干化,干化后的污泥有机成分可作为水泥窑的替代燃料,而无机成分可代替水泥原料进行配比控制和调整。	满足 GB30760《水泥窑协同处置固体废物技术规范》要求。 污泥入机水分 60-80%, 出机水分 10-20%, 要求处理量: 50-250t/d。
1.4 碳捕集利 用			水泥行业同需时考虑采用 CO ₂ 捕集和利用技术(CCUS),从而实现水泥行业碳减排目标。
	1.4.1 水泥窑全氧燃烧技术	全氧燃烧烟气循环,实现部分或全部烟气的 CO ₂ 高浓度富集,从而大幅降低 CO ₂ 高纯度捕集成本。	要求出预热器烟气中 CO₂浓度≥80%(干基浓度)。
	1.4.2 水泥生产二氧化碳捕集和利用		通过多种技术的集成应用,实现水泥窑炉烟 气 CO ₂ 高效捕集。要求水泥线配套二氧化碳

	技术	行纯化、最终的 CO ₂ 利用等,例如油田催油、制备碳	捕集规模≥5万吨/年。
	1.4.3 水泥窑间接加热水泥生料技术	化制品、农业生产应用等。 水泥窑尾间接加热水泥生料热碳酸盐分解技术,制备 高纯 CO ₂ 技术,降低碳捕集能耗及运行成本。	出预热器烟气中 CO₂浓度≥85%(干基浓度)。
	1.4.4 水泥窑全氧 燃烧耦合碳捕集纯 化技术	水泥窑炉全氧燃烧耦合低能耗碳捕集提纯技术主要包括 CO ₂ 自富集系统、CO ₂ 捕集提纯系统和制氧系统等。其中 CO ₂ 自富集系统采用全氧燃烧技术, CO ₂ 捕	
		集提纯系统采用 VPSA 提浓+PTSA 净化+低温精馏液化提纯组合技术方案,制氧系统采用变压吸附制氧技术。相较常规碳捕集技术,水泥窑炉全氧燃烧技术可以显著提升出预热器系统烟气 CO ₂ 浓度,降低烟气捕	
	1.4.5 水泥工业固	集提纯系统烟气处理量,从而实现单位 CO ₂ 制备能耗的显著降低。 固体胺法是一种燃烧后捕获技术,固体胺循环吸附解	
	体胺碳捕集技术	吸 CO ₂ 分别在吸附反应器和再生反应器内进行。在吸附反应器内,固体胺与烟气充分接触,烟气中的 CO ₂ 快速扩散进入固体胺的孔隙内,与吸附剂表面的胺发	
		生反应,并释放出热量,其中在无水条件下胺和 CO ₂ 反应生成氨基甲酸盐,在有水条件下根据胺和 CO ₂ 的摩尔比生成碳酸盐或重碳酸盐,固化 CO ₂ 。	
1.5 清洁生产 和固危废处置 技术			水泥行业可消纳大量固体废物,且并不产生 任何固废排放的行业。 水泥熟料煅烧及各生产阶段会产生微量的
JA/IC			大气污染物,包括粉尘、 SO_2 和 NOx 等。要求应用通过国家鼓励的环境保护技术措施,达到水泥行业超低排放指标。

	1.5.1 脱硝系统	自脱硝与 SNCR 、SCR 相结合的脱硝技术, 在保证氮	排放: NOx≤45mg/Nm³;
		氧化物排放达标的同时,通过优化工艺流程和参数控	烟囱氨逃逸: ≤5mg/Nm³。
		制,有效减少氨水用量,满足日益严格的环保要求。	
	1.5.2 脱硫系统	包括自脱硫、干法、半干法、湿法等脱硫技术,确保	排放: SO₂≤30mg/Nm³。
		水泥工业不同原料条件下的硫氧化物达标排放。	
	1.5.3 水泥窑固危	包括固态危险废弃物处置单元,半固态危险废弃物处	满足 GB30760《水泥窑协同处置固体废物技
	废处置	置单元和液态危险废弃物处置单元。针对不同危险废	术规范》要求。
		弃物的相态,进行相应的处置工艺,并最终送入水泥	处置能力:≥10万吨/年。
		熟料烧成系统进行焚烧处置。其主要特点是利用水泥	
		窑的高温焚烧及水泥熟料矿化物烧结过程的高温环	
		境、热稳定性好及体量大等特点,实现固危废毒害特	
		性的分解、降解、惰性化和稳定化,且大部分废弃物	
		还可明作为水泥生产的替代原料或燃料,实现废弃物	
		有效资源化利用。	
1.6 绿色能源			考虑水泥厂余热发电系统,水泥产品消耗电
			能产生的 CO ₂ 排放因子约为 0.03-0.05
			t/t-c1,约占水泥厂碳排放总量的 5-7%。
	1.6.1 水泥工厂近	绿色电能包括光伏发电、风力发电等; 可利用水泥厂	
	零外购电改造	的自然环境和地理位置等,包括水泥矿山、输送廊道,	
		使用绿色能源技术途径减少生产过程中的传统化石	
		燃料电力消耗,结合水泥厂的余热发电系统和绿色能	
		源储存技术,改造现有水泥厂,使其实现"零外购电"	
		或"近零外购电"。	
	1.6.2 水泥工厂子	利用水泥厂的余热发电系统或新能源系统,实现水泥	减少水泥窑、余热发电系统非必要的启停次
	系统供电技术改造	生产线关键车间(如熟料烧成,煤粉制备,原料制备	数,耐火材料使用寿命平均延 1.25 倍,提
		等车间)稳定供电,确保在外供电紧急停电的情况下	高了运转率,机电设备维修成本降低 15%以

		正常微网运转。	上。
1.7 先进生产			水泥生产分为矿山开采、原料破碎和粉磨、
工艺和节能减			熟料煅烧、水泥制备等生产过程。要求在不
排方案			增加产能的条件下,通过生产工艺和装备改
			造升级,单位产品生产能耗降低5%以上。
	1.7.1 高效低氮预	采用高能效低阻六级预热器、自脱硝分解炉、高效低	新建生产线:熟料单位产品综合能耗≤
	热预分解系统集成	碳低氮多通道煤粉燃烧器等技术与装备,突破能效提	95kg/t-c1, NOx 初始浓度≤250-300mg/Nm³
	系统	升与污染物治理技术瓶颈。包括烧成窑尾预热器 5 级	标煤耗降低: 4~8kg/t-cl;
		改 6 级等节能降耗技术改造工程。	老线改造: NOx 初始浓度≤350-400mg/Nm³。
	1.7.2 第四代高效	采用高效固定篦床、破碎机中置、无漏料密封结构活	热回收效率≥75%;二次风温≥1150℃;三
	篦冷机	动篦床, 具有高效急冷, 达到更高的二、三次风温和	次风温≥950℃;熟料出口温度≤65℃+环境
		热回收效率。	温度。
	1.7.3 高效水泥生	采用辊压机或外循环立式辊磨机配合静、动态高效选	原料粉磨系统综合电耗≤10.5kWh/t-生料。
	料终粉磨	粉机组成生料制备终粉磨系统,提高生产效率,降低	
		粉磨电耗;采用高耐磨辊面技术提高磨辊使用寿命,	
		提高对原料高磨蚀性的适应能力,保证系统运转率。	
	1.7.4 水泥高效联	采用高压料床粉碎设备(辊压机、立式磨)或联合粉	水泥粉磨系统综合电耗≤23kWh/t-ce
	合粉磨节能技术	磨技术新建生产线或对现有生产线进行改造,大大降	(P042.5 水泥,比表面积 350m²/kg)。
		低粉磨系统电耗。采用高耐磨辊面技术提高磨辊使用	
		寿命,提高对原料高磨蚀性的适应能力,保证系统运	
		转率。	
	1.7.5 水泥分别粉	针对目前水泥产品颗粒分布特点,以降低水泥产品熟	水泥产品中熟料掺比降低 10%及以上。
	磨及组合降碳技术	料用量,优化水泥强度,满足产品性能为目的进行研	
		发配置,结合水泥标准稠度需水量、凝结时间等指标,	
		利用不同水泥组分粉磨特点及产品颗粒级配要求,实	
		现水泥产品高品质同时降低熟料掺比。	

	1.7.6 立式辊磨机	利用立式辊磨机对高炉矿渣进行力学碾磨后成为矿	要求单位产品生产能耗降低10%及以上。
	粒化高炉矿渣粉制	渣粉。优化工艺参数和流程,确保矿渣粉在磨机内获	
	备技术	得均匀的力学作用,实现节能和更好的产品性能,粉	
		磨后高炉矿渣可以得到更高的活性并具备更好的水	
		泥混凝土性能。	
	1.7.7 通用装备节	包括采用高效节能机械输送设备, 高效节能风机和空	要求节能 10%及以上。
	能技术	压机,高效节能电机等。	
	1.7.8 水泥窑炉用	水泥窑烧成系统内衬采用低导热系数的纳米隔热板	
	耐火材料节能降耗	或气凝胶隔热材料等新型高效隔热材料代替传统硅	
	技术	酸钙板; 回转窑内衬采用低导热系数的复合砖或气凝	
		胶复合砖等新型高效耐火隔热材料,代替传统硅莫砖	
		及高铝砖等,减少系统散热,降低烧成系统热耗和煤	
		耗,减少 CO₂排放量。	
	1.7.9 水泥窑富氧	将高浓度氧气(体积浓度高于21%)鼓入燃烧室和	
	燃烧技术	燃料进行混合燃烧。富氧燃烧能够改善煤粉的燃烧特	
		性,提高回转窑内的火焰温度及黑度,缩短煤粉在回	
		转窑内燃烧所需的时间,火焰能够对物料的辐射传热	
		能力更强,提高回转窑系统热效率,减少废气排放量,	
		实现节能减排。	
1.8. 智能化和			
数字化			
	1.8.1. 水泥工厂工	综合应用 BIM、GIS、IoT 技术,实施数字化驱动的	
	程建设数字化技术	智能设计和智慧建造,以可视化、参数化数字模型应	
		用及信息共享、多专业协同的工作机制提升设计施工	
		水平,保障工程质量,减少建设期间碳排放,并形成	
		工程建设全过程数字资产,实现工厂数字化交付。	

	1.8.2 水泥制造全	基于全流程关键设备跟踪和多元信息感知技术、原燃	
	流程智慧管控	料波动和异常工况自适应全局优化控制技术、AI 图	
		像和视频识别技术,实现水泥制造全流程的智能管	
		控、预知维护和精益管理。	
	1.8.3 水泥厂生产	构建智能装备、智能生产、智能运维、智能运营、智	
	工艺过程智能化、数	能决策五大维度方面全面智能化和数字化。	
	字化		
1.9 其它	1.9.1 水泥工业原	利用管状带式输送机、长距离带式输送机及封闭廊道	
	材料及产品绿色运	等清洁方式运输封闭皮带廊等运输水泥工业原料和	
	输	燃料;或利用新能源车辆运输原燃料及产品,减少运	
		输过程中的碳排放。	
	1.9.2 水泥矿山均	对水泥生产各原料矿石、需综合考虑均质要求和剥采	
	质开采、配矿及生态	比要求, 在确保入厂各原料质量满足生产要求前提	
	修复	下,实现矿山宝贵的资源最大合理化利用。同时考虑	
		矿山生态修复工作:对新建、在建矿山进行绿色矿山	
		改造,通过生态修复、生态园林等,发挥矿山在"碳	
		吸收"过程中的作用。	
	1.9.3 其它节能减		其它涉及碳减排效果明显的技术改造或技
	排技术		术升级项目,可由项目单位酌情提出申请后
			由平台组织专家组进行评估。
2. 石膏行业			
2.1 原燃料替代	元和绿色能源应用		达到或优于 GB33654-2017《建筑石膏单位
			产品能源消耗限额》中1级能耗限额。
	2.1.1 原料无害化	根据石膏生产全流程特性,在满足产品质量的前提下	相比常规工业副产石膏清洗系统,可减少综
	处理	综合利用系统产生的废水、废热,对工业副产中常见	合能耗 5%左右,耗水量及废水排放量最高
		的氯、磷、氟离子等杂质离子含量和原料含水量进行	可减少 20%左右。

		控制,达到低耗能、低耗水、低排废目的。	
	2.1.2 原料再生及	采取合适的工艺手段,将生产过程中产生的粉尘、废	
	替代	渣及废板回收至生产线进行二次利用,做到生产线固	
		体废弃物近零排放。	
	2.1.3 绿色能源综	利用石膏建材大面积生产车间,使用光伏建筑一体化	
	合管控	等技术手段,提高绿电比例。	
	2.1.4 废弃及低热	针对工业副产石膏含水量普遍偏高的特点,以常规均	
	热源利用	化技术为基础,结合自然通风、生产废热回用等手段,	
		对原料库房进行优化设计,从而降低生产耗能,原料	
		含水率降低2-3%。且对低压二次蒸汽、高温热水等	
		低热能源进行综合利用。	
	2.1.5 绿电微波加	利用绿加微波制热技术,提高干燥机预热段加热升温	
	热技术	效率,解决传统干燥机因热风加热梯度长导致的预热	
		段过长问题,缩短石膏板干燥机长度,进而减少干燥	
		机输送及循环风动力损耗,减少干燥机散热量。	
2.2 能耗提升	,		
	2.2.1 石膏生产能	针对石膏生产过程中各能源利用情况,对全厂能源进	降低综合能耗 5-10%,
	源梯级利用技术	行系统调配, 如将煅烧过程产生的废热用于石膏烘干	
		系统; 利用高效回转冷却器在控制建筑石膏质量的同	
		时将冷却风回用于石膏煅烧、烘干等系统; 利用高效	
		余热回收换热器将石膏板干燥机废热回用于燃料助	
		燃风或水汽控制;利用换热器废水回用于石膏板配料	
		用水及温度控制从而达到减少耗能的目的。	
	2.2.2 石膏生产综	利用高效石膏气流烘干技术、高效回转冷却器、高精	
	合能效提升技术	度石膏板配料系统、高精度石膏砂浆配料系统、高效	
		石膏板干燥机等技术与装备,对关键生产工艺参数进	

		行调配,提升生产稳定性,减少废品率,提升设备开机率及产品成品率,达到节能降耗目的。	
2.3智能制造			
		用 AI 智能行车及铲车,实现智能化堆取料、自动翻料、均化原料品位和水分等智能化管理需要;成品库采用采用 AGV 小车或 AI 智能化叉车,实现智能化管理。	
2.4 其它节能减排技术			石膏行业其它涉及碳减排效果明显的技术 改造或技术升级项目,可由项目单位酌情提 出申请后由平台组织专家组进行评估。
3. 玻璃行业			
3.1 原燃料替代			
	3.1.1 碳酸盐原料	采用霞石等硅酸盐原料替代碳酸盐,引入锂长石等助	
	替代	熔剂和澄清剂,调整玻璃配方以降低碳酸钠的用量从 而减少碳排放量。	
	3.1.2 废弃玻璃高 掺入	碎玻璃作为熟料,可降低生产能耗;碎玻璃加入量范围 8-30%。	
	3.1.3 玻璃熔窑全 氧燃烧成套技术装 备	玻璃熔制过程中利用纯氧代替空气与燃料进行燃烧, 同时为 CO2 捕集创造条件。	依据 GB21340《平板玻璃单位产品能源消耗限额》,熔化单耗降低 30%,符合 GB26453《平板玻璃工业大气污染物排放标准》,NOx排放浓度降低到 200mg/Nm3 以下。
	3.1.4 配合料块化、 粒化和预热技术	采用配合料块化、粒化和预热技术,降低熔化温度。	
3.2 能耗和管理	提升		
	3.2.1 玻璃熔窑电 助熔	玻璃熔化过程中采用供电替代燃料进行熔化,电助熔比例达到 20%时,节能 5%-8%。	满足 GB21340《平板玻璃单位产品能源消耗限额》平板玻璃单位产品能耗先进值。

	3.2.2 节能型玻璃	通过数学、物理模拟,并采用阶梯型池底、复合吊墙、	降低能耗≥6%,满足 GB21340《平板玻璃单
	窑炉结构优化和配	窑坎、鼓泡、高辐射涂料、梯度复合保温技术、高效	位产品能源消耗限额》单位产品能耗先进
	套装备	节能设备等技术和手段,实现窑炉节能、装备应用节	值。
		能。	
	3.2.3 玻璃工厂数	利用玻璃工厂数字化管理云平台,使重点用能设备上	满足 ISO 23247《自动化系统与集成制造系
	字化管理云平台	云、上平台, 形成感知、监测、预警、应急等能力,	统的数字孪生架构》、BDS-600《基于模型定
		通过数据收集、分析,推动工艺革新、装备升级、管	义 MBD 技术应用规范》相关要求。
		理优化和生产过程智能化,提升碳排放的数字化管	
		理、网络化协同、智能化管控水平,促进企业构建碳	
		排放管理体系。	
	3.2.4 玻璃工厂智	提高设备保温性能、加热均匀性等性能降低能耗;提	
	能装备及控制系统	高装备智能化控制水平,通过数据采集分析,优化高	
		能耗设备控制方案,提高控制精度并提前预判,提高	
		熔窑燃烧效率,降低加热器使用频率,降低能耗。	
	3.2.5 玻璃熔炉脱		
	硫脱硝除尘一体化		
	技术及装备		
	3.2.6 玻璃窑炉烟	利用余热锅炉回收玻璃熔窑的烟气余热进行发电,减	
	气余热发电技术	少玻璃工厂外购电量。	
3.3碳捕集和绿	色低碳		
	3.3.1 全(富) 氧燃	针对玻璃炉窑的工艺和烟气特点,采用变压吸附等碳	
	烧窑炉耦合碳捕集		
	成套技术	烟气的 CO ₂ 高浓度富集,实现 CO ₂ 高纯度捕集。	
	3.3.2 新型高效光	在各类工业和民用建筑屋面、立面利用新型高效光伏	
	伏建筑一体化	发电玻璃,实现光伏建筑结构一体化。	
	(BIPV) 应用		
	/	I	I .

	3.3.3 企业绩效等级提升行动	通过能源类型、装备水平,污染治理技术、排放限值。 无组织排放、监测监控、环境管理、运输方式和运输 监管等方面的改造,实现环保绩效等级提升。	
3.4 其它节能 减排技术			玻璃行业其它涉及碳减排效果明显的技术 改造或技术升级项目,可由项目单位酌情提 出申请后由平台组织专家组进行评估。
4. 玻纤行业			
4.1 原燃料替付	t		
	4.1.1 玻璃纤维生产大功率电助熔技术	电助熔比例 25%以上,依据 GB29450-2012 《玻璃纤维单位产品能源消耗限额》。	
	4.1.2 电熔法岩棉熔制技术	岩棉熔炉采用三相电极供电,由电能转化为热能,热效率较高,实现岩棉熔制过程电能全替代,在岩棉工厂使用率≥30%。	
	4.1.3 玻璃纤维工厂绿色能源零外购电改造技术		
	4.1.4 玻璃纤维生产线固废高效回用技术与成套装备	玻璃纤维废丝进行短切、脱水、除杂质、粉磨等一系列处理后,作为原料重新用于玻璃纤维生产,回用率 ≥90%。	
	4.1.5 岩棉固废高 效回用技术与成套 装备	将岩棉固体废弃物处理后送入固废利用系统后回炉利用,固废利用率≥90%,每吨产品协同处理固废≥910kg,有利于减少岩棉工厂固体废弃物的排放,减少天然原料的用量,提高熔化效率。	
4.2 规模化玻纸	纤制造		

	4.2.1 增强型玻璃 纤维超大规模池窑 拉丝生产技术与成	采用单元池窑方式,提升池窑规模,有利于降低玻璃液熔制能耗、提升玻璃液质量、降低投资强度。	依据 GB29450《玻璃纤维单位产品能源消耗限额》,单窑规模年产 15 万吨及以上。
	套装备		
	4.2.2 电子级玻璃	采用单元池窑方式,提升池窑规模,有利于降低玻璃	依据 GB29450《玻璃纤维单位产品能源消耗
	纤维超大规模池窑	液熔制能耗、提升玻璃液质量、降低投资强度。	限额》,单窑规模年产6万吨及以上。
	拉丝生产技术与成		
	套装备		
	4.2.3 风力发电用	在玻璃成份中引入稀土等元素,优化玻璃分子结构,	满足 GB/T18369 《玻璃纤维无捻粗纱》 要求。
	高性能玻璃纤维规	提升玻璃纤维的弹性模量和拉伸强度,满足大功率风	
	模化制造技术与成	力发电叶片对于增强材料的性能要求,玻璃纤维产品	
	套装备	弹性模量达到 90GPa 以上,强度在 3000MPa 以上。	
	4.2.4 大幅宽岩棉	岩棉板线由传统 1.2 米幅宽提高至 2.4 米幅宽,大	
	板线生产技术与成	幅提高岩棉生产效率,可提高生产效率≥50%。	
	套装备		
4.3 能耗和管理	提升		
	4.3.1 节能型玻璃	采用新型耐火材料,提高耐火材料抗侵蚀性能,采用	依据 GB29450《玻璃纤维单位产品能源消耗
	纤维熔窑	新型隔热材料,降低窑体表面温度,减少外表面的散	限额》,减少约 5%热损失。
		热损失,提高熔化温度,提高玻璃液熔制质量,减少	
		燃料消耗,提高熔窑的热效率。	
	4.3.2 玻璃纤维生	将玻纤生产过程中所产生热能进行回用,实现玻纤生	GB29450《玻璃纤维单位产品能源消耗限
	产线全流程热能回	产线的全流程热能高效利用,大幅提升能源利用效	额》、JC/T545《玻璃纤维工厂能量平衡通则》
	收	率。	等。
	4.3.3 熔窑全氧燃	全窑采用全氧燃烧技术,与空气燃烧相对辐射能力	依据 GB29450《玻璃纤维单位产品能源消耗
	烧	强, 传热效率显著提高。	限额》、JC/T545《玻璃纤维工厂能量平衡通
			则》、T/CFIA B2-2023《温室气体排放核算

			与报告要求 玻璃纤维生产企业》
	4.3.4 企业绩效等	通过能源类型、装备水平、污染治理、排放限值、无	参考《重污染天气重点行业应急减排措施制
	级提升行动	组织推放、监测监控水平、环境管理水平、运输方式	定技术指南(2020 年修订版)》(环办大气函
		和运输监管等方面的改造,实现环保绩效等级提升。	[2020]340 号)或相关标准规范。
4.4 玻纤工厂智	能制造		
	4.4.1 玻璃纤维生	通过整合生产线全域全周期生产数据,融合数字化技	
	产线预防性诊断及	术,形成一套切实可用的生产线预防性诊断系统,确	
	在线监测	保生产持续稳定运行,减少资源、能源的浪费,实现	
		生产管控精准绿色。	
	4.4.2 玻璃纤维工	通过采集用能数据, 对能耗的分类、分项、分时、分	
	厂无人值守能源管	区域的统计分析,实现对能源使用的全面数字化和可	
	控	视化, 直观发现用能改进优化点, 优化能源使用, 降	
		低企业综合能耗,达到节能增效的目的。	
	4.4.3 玻璃纤维工	通过自动化物流来提质增效,实现玻纤工厂动态24	
	厂智能物流一体化	小时不停机生产,精准控制,减少资源的浪费,提高	
		企业生产效率、降低企业生产成本,生产流程稳定,	
		提高产品的一致性。	
	4.4.4 玻璃纤维工	采用自动化智能化高效脱硫脱硝治理技术,降低玻璃	
	厂高效废气治理	纤维密炉颗粒物、二氧化碳和氮氧化物等污染物排放	
		浓度,建设环境管控平台实现智能化管控。	
4.4 其它节能			玻纤行业其它涉及碳减排效果明显的技术
减排技术			改造或技术升级项目,可由项目单位酌情提
			出申请后由平台组织专家组进行评估。
5. 陶瓷行业			
5.1 原料低碳加	II		

	5.1.1 陶瓷原料连	自动化程度高,生产效率高,同时连续的进料与出料	
	续球磨制浆工艺	可减少大量装料和出料的时间。	
	5.1.2 陶瓷干法制	干法制粉将原材料干法粉碎和细磨后, 经增湿造粒、	
	粉技术	干燥、筛分和陈腐后制备成干压成形用粉料,与原湿	
		法工艺相比,替代了粉料磨成泥浆,再喷雾干燥工序,	
		通过减少大量的蒸发水分,实现陶瓷砖制粉工序节能	
		减排。	
	5.1.3 卫生陶瓷低	卫生陶瓷烧成温度降低至 1180℃-1200℃左右, 合理	
	温快烧技术	缩短烧成周期。	
5.2 生产技术和	配套技术		
	5.2.1 低品位原料	利废型新产品是指在满足安全和使用性能的前提下,	
	应用和利废型陶瓷	使用废弃物等替代部分原材料生产出的建筑材料;通	
	新产品生产技术	过在有釉砖坯体使用部分低品位的原料或者废渣料,	
		实现优质原料替代率 10%以上。	
	5.2.2 陶瓷智能化	卫生陶瓷生产中应用具有自学习功能的喷釉机器人	
	生产技术及成套装	和修坯机器人技术、初始模型数控加工及 3D 打印技	
	备	术、压力注浆成型技术、低压快排水技术、智能化高	
		效干燥系统等,提升卫生陶瓷的生产效率和智能化水	
		平;建筑陶瓷应用转运包装机器人技术、电烧窑、喷	
		墨打印技术、多层干燥窑、超大规格陶瓷板材制造技	
		术、智能抛磨技术等,提升建筑陶瓷的生产效率和智	
		能化水平。其中低压快排水、智能化高效干燥技术、	
		多层干燥窑、电烧窑、智能抛磨技术的应用, 可提高	
		能源使用效率。	
5.3 能耗和管理	提升		
	5.3.1 陶瓷窑炉天	烧成窑炉使用天然气替代煤制气,煤气站停用,减少	

	41. 左 林 小	了.世.知.仁	
	然气替代煤制气技		
	术	窑炉能源使用效率。	
	5.3.2 节能型陶瓷	通过窑炉大型化、富氧燃烧、助燃空气预热、节能烧	
	窑炉及优化	嘴及布局优化、窑炉智能化控制等措施。	
	5.3.3 陶瓷窑炉余	烧成窑炉热烟气通过热交换器置换出干热空气,用于	
	热利用	坯体干燥或喷雾干燥塔热风炉助燃风和配风。	
	5.3.4 建筑陶瓷产	通过产品的薄形化,减少原材料的使用,产品厚度降	
	品薄型化技术	低 10%。	
	5.3.5 少空气干燥	采用少空气干燥闭路循环,用坯体内蒸发的水分精确	
	技术与压力注浆成	调整干燥系统湿度,实现温湿度自动化控制,从而提	
	形技术	高干燥效率和复杂器型干燥合格率,工序平均综合能	
		耗降低 2%-5%。采用压力注浆,实现成型周期由原有	
		的每日注浆 1 次升级为每日注浆 40-50 次。	
	5.3.6 企业绩效等	通过能源类型、装备水平、污染治理技术、排放限值、	参考《重污染天气重点行业应急减排措施制
	级提升行动	无组织推放、监测监控水平、环境管理水平、运输方	定技术指南(2020 年修订版)》(环办大气函
		式和运输监管等方面的改造,实现环保绩效等级提	[2020]340 号)
		升。	
5.4 清洁能源和	工艺优化		
	5.4.1 陶瓷辊道窑	通过陶瓷砖电烧辊道窑技术,氢能源、氨能源等混合	
	清洁能源技术	气体燃烧等技术,同时结合陶瓷砖薄形化工艺技术,	
		实现全行业减碳 30%以上。利用工厂厂房楼顶安装光	
		伏发电设备,解决办公与辅助动力及照明系统用电,	
		降低外购电 5%以上。	
	5.4.2 陶瓷生产线	应用陶瓷原料均化、软硬料分磨、连续式球磨、泥浆	
	流程优化	参数传感器收集调控技术等,优化原料生产流程。	
	l .		

5.5 其它节能 减排技术		陶瓷行业其它涉及碳减排效果明显的技术 改造或技术升级项目,可由项目单位酌情提
6. 其它建材行	亦 [出申请后由平台组织专家组进行评估。
		其它建材行业如石灰制造,水泥制品、新型建筑材料等,涉及碳减排效果明显的技术改
		造或技术升级项目,可由项目单位酌情提出申请后由平台组织专家组进行评估。